Luca Urbinati's Publications

  • Manca, E., Urbinati, L., Casu, M.R., "An End-to-End Flow to Deploy and Accelerate TinyML Mixed-Precision Models on RISC-V MCUs," in review process, doi: 10.36227/techrxiv.173161032.20267860/v1

    PDF
  • Urbinati, L., "Accelerating Quantized DNNs with Dedicated Hardware Accelerators and RISC-V Processors Using Precision-Scalable Multipliers," Doctoral Thesis, Politecnico di Torino, 2024.

    PDF
  • Manca, E., Urbinati, L., Casu, M.R., "STAR: Sum-Together/Apart Reconfigurable Multipliers for Precision-Scalable ML Workloads," 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), Valencia, Spain, 2024, pp. 1-6.

    PDF
  • Urbinati, L., Casu, M.R., "High-Level Design of Precision-Scalable DNN Accelerators Based on Sum-Together Multipliers," in IEEE Access, vol. 12, pp. 44163-44189, 2024, doi: 10.1109/ACCESS.2024.3380472.

    PDF
  • Štitić, B, Urbinati, L., Di Guglielmo, G., Carloni, L. and Casu, M.R., "Enhanced Machine-Learning Flow for Microwave-Sensing Systems for Contaminant Detection in Food," in IEEE Transactions on AgriFood Electronics, doi: 10.1109/TAFE.2024.3421238.

    PDF
  • Štitić, B, Urbinati, L., Di Guglielmo, G., Carloni, L. and Casu, M.R., "Enhanced Machine-Learning Flow for Microwave-Sensing Systems to Detect Contaminants in Food," 2023 IEEE Conference on AgriFood Electronics (CAFE), Torino, Italy, 2023, pp. 40-44, doi: 10.1109/CAFE58535.2023.10291198.

    PDF
  • Manca, E., Urbinati, L., Casu, M.R., "Accelerating Quantized DNN Layers on RISC-V with a STAR MAC Unit," Proceedings of SIE 2023. SIE 2023. Lecture Notes in Electrical Engineering, vol 1113. Springer, Cham. https://doi.org/10.1007/978-3-031-48711-8_6.

    PDF
  • Urbinati, L., Casu, M.R., "Design-Space Exploration of Mixed-precision DNN Accelerators based on Sum-Together Multipliers," 2023 18th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), Valencia, Spain, 2023, pp. 377-380, doi: 10.1109/PRIME58259.2023.10161835.

    PDF
  • Urbinati, L., Casu, M.R., "A Reconfigurable Depth-Wise Convolution Module for Heterogeneously Quantized DNNs," 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 2022, pp. 128-132, doi: 10.1109/ISCAS48785.2022.9937753.

    PDF
  • Urbinati, L., Casu, M.R., "A Reconfigurable 2D-Convolution Accelerator for DNNs Quantized with Mixed-Precision," Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2022. Lecture Notes in Electrical Engineering, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-031-30333-3_27.

    PDF
  • Urbinati, L., Casu, M.R., "A Reconfigurable Multiplier/Dot-Product Unit for Precision-Scalable Deep Learning Applications," Proceedings of SIE 2022. SIE 2022. Lecture Notes in Electrical Engineering, vol 1005. Springer, Cham. https://doi.org/10.1007/978-3-031-26066-7_2.

    PDF
  • Ricci, M. et al., "Machine-Learning-Based Microwave Sensing: A Case Study for the Food Industry," in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 11, no. 3, pp. 503-514, Sept. 2021, doi: 10.1109/JETCAS.2021.3097699.

    PDF
  • Urbinati, L., Ricci, M., Turvani, G., Vasquez, J.T., Vipiana, F. and Casu, M.R., "A Machine-Learning Based Microwave Sensing Approach to Food Contaminant Detection," 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9181293.

    PDF
  • Gnoli, L. et al., "Fault Tolerant Photovoltaic Array: A Repair Circuit Based on Memristor Sensing," 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Noordwijk, Netherlands, 2019, pp. 1-4, doi: 10.1109/DFT.2019.8875467.

    PDF
  • Urbinati, L., "Detection of food contaminants with Microwave Sensing and Machine Learning," Master's Thesis, Politecnico di Torino, 2019.

    PDF
  • Urbinati, L., "Progetto di un circuito di interfaccia basato su tecnologia NFC per nodi sensori a bassissimo consumo," Bachelor's Thesis, Università di Bologna, 2017.

    PDF